
 

1 

 

INTEGRATING GRAPH NEURAL NETWORKS AND 

SPECTROPHOTOMETRY FOR pIC50 PREDICTION OF PESTICIDES 

 

Ang Yu Xi Sophie1, Yap Xiu Huan2, Shen Bingquan2 

1Raffles Institution, 1 Raffles Institution Lane, Singapore 575954 
2DSO National Laboratories, 12 Science Park Drive, Singapore 118225 

 

1. Abstract 

Accurate pIC50 prediction is vital for assessing the toxicity and potency of chemical 

compounds, including pesticides. This study leverages computational and experimental 

approaches to achieve this goal. A Graph Isomorphism Network (GIN) was pretrained on a large 

PubChem dataset (117,520 molecules) to learn node-level molecular features and fine-tuned on a 

smaller dataset (14,611 molecules) containing experimentally determined pIC50 values. The 

model predicts pIC50 values directly from molecular SMILES strings. Validation of the GIN's 

predictions was conducted using spectrophotometric assays to determine empirical pIC50 values 

for two pesticides of differing potency. A strong correlation between predicted and experimental 

values highlights the potential of combining graph-based deep learning for toxicity prediction. 

 

2. Introduction 

Molecular property prediction is a key area of computational chemistry, aimed at 

developing models that map molecular structures to their properties.1 The accurate prediction of a 

compound’s inhibitory concentration (pIC50) is a cornerstone of toxicological studies, allowing 

chemical structures, simulation, and physical data to be integrated when predicting health risks 

and other toxicological information.2 The pIC50 value, which quantifies the half maximal 

inhibitory concentration, is used to determine the potency of a drug against a variety of enzymes 

or biological targets associated with the pathogenesis of multiple disorders.3 Experimental 

identification of the bioactivity of each potential peptide is an expensive and time-consuming task.4 

Deep representation learning has been reported as a promising approach for molecular property 

prediction, outperforming fixed molecular representations.1 

However, accurately predicting molecular properties poses a significant challenge due to 

the complex relationships between molecular structures and their properties.5 Molecules are 

typically represented in three ways: fixed representations, including fingerprints and structural 

keys, that signify the presence of specific structural patterns; linear notations, such as Simplified 

Molecular Input Line Entry System (SMILES) strings; and molecular graphs.6 With the advent of 

deep learning, various neural networks have been proposed for molecular representation learning, 

such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and graph 

neural networks (GNNs).1  

One major task for AI in drug discovery is molecular property prediction.1 Graph 

Isomorphism Networks (GINs) address this challenge by representing molecules as graphs, 

capturing both local and global features to link chemical topology to biological activity. 

Furthermore, transfer learning has emerged as an essential technique to address the scarcity of 
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labelled data and high dimensionality of feature spaces.5 By leveraging knowledge gained from 

related tasks, transfer learning enables models to generalise better to target tasks with limited 

training data, enhancing prediction accuracy. Thus, to enhance model accuracy, pretraining on 

large datasets followed by task-specific fine-tuning is crucial. 

The EU has established a new chemical assessment paradigm (REACH, enacted in 2007) 

to evaluate chemicals globally.5 In the USA, quantitative structure–activity relationships (QSARs) 

predictions are used to evaluate two to three thousand chemicals each year and to assess a 

significant portion of the toxicity information.7 However, traditional QSAR models often rely on 

predefined molecular descriptors (e.g., atom counts, bond types, molecular weight) and linear or 

nonlinear regression models to establish relationships between molecular features and biological 

activity.8 The coverage and comprehensiveness of metabolic data presents a critical challenge with 

respect to QSAR modelling8, requiring manual recalibration for new datasets or molecular classes.  

In this study, we developed a GIN model pretrained on a PubChem toxicity dataset of over 

100,000 molecules and fine-tuned it on over 14,000 molecules with known pIC50 values to predict 

pesticide inhibition. Unlike the static descriptors of QSAR, the GIN directly learns from molecular 

graph representations and captures topological and relational features more comprehensively. 

Additionally, the GIN can incorporate new data seamlessly through retraining. Validation through 

acetylcholinesterase (AChE) spectrophotometric assays revealed strong agreement between 

predicted and experimental pIC50 values. B 

3. Materials and Methods 

3.1 Dataset and Data Preprocessing 

SMILES Representation: Molecular structures in both datasets were represented using 

the SMILES notation. To prepare the data for the GIN model, each SMILES string was converted 

into a graph structure. In this representation, nodes represent the atoms in the molecule and edges 

represent the bonds between atoms. Bond types (single, double, etc.) were encoded as edge 

attributes. This transformation enabled the model to process molecular structures in a graph format, 

capturing both the local connectivity of atoms and the overall topology of the molecule. 

Feature extraction: Feature extraction was conducted to provide meaningful inputs to the 

GIN model at both the node and graph levels. To extract node level features, each atom in the 

graph was assigned a feature vector encoding its chemical properties, such as atom type, 

hybridization state and presence of formal charges, to allow the GIN to learn how individual atoms 

contribute to the molecule’s overall activity. In addition, graph-level descriptors such as molecular 

weight, lipophilicity and topological polar surface area (TPSA) were computed, summarising 

global molecular properties particularly relevant for pIC50 prediction. Such preprocessing pipeline 

ensured that the GIN could learn from both the detailed local information at the atom level and the 

broader structural and physicochemical properties of each molecule.  

3.2 Model Architecture and Pretraining 

GIN Components: The GIN was chosen for this study due to its ability to distinguish non-

isomorphic graphs effectively, making it ideal for molecular graph representation. The key 

components of the GIN architecture are as follows: (i) the input layer consisting of molecular 

graphs converted from SMILES strings; (ii) graph convolution layers aggregating information 
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from neighbouring nodes, iteratively updating each node’s representation to encode local structural 

and chemical information; (iii) hidden layers triggering nonlinear transformations using activation 

functions (e.g. ReLU) and batch normalisation to stabilise training; (iv) the readout layer, a global 

pooling layer combining node features into a fixed-size graph-level representation; and (v) the 

task-specific output layer – during pretraining, the output is node-level predictions to learn 

molecular substructures, while during fine-tuning, the output is a single graph-level target (i.e. 

pIC50). 

Pretraining on the PubChem Dataset: To build a robust feature extractor, the GIN was 

pretrained on a large toxicity dataset from PubChem via a self-supervised learning task, where the 

goal was to predict node-level features, such as atomic environments or chemical properties. Using 

the generative reconstruction technique, we masked the features of a random batch of nodes, 

forwarded the masked graph through the GIN encoder and reconstructed the masked node features 

given the node representations of their local sub-graphs9. The model parameters were then 

optimised using gradient descent and a loss function that measured the accuracy of node-level 

predictions. 

Fine-tuning for pIC50 Prediction: After pretraining, the GIN was fine-tuned on a smaller 

dataset with corresponding pIC50 values. This phase involved task-specific adjustments, where (i) 

the output layer was modified to predict graph-level instead of node-level properties; (ii) both 

node-level features (e.g., atomic types) and graph-level descriptors (e.g., molecular weight, 

lipophilicity, TPSA) were utilised to enhance prediction accuracy; and (iii) the pre-trained weights 

were used to initialise the GIN, allowing the model to retain its learned molecular features. A 

regression loss function (e.g., Mean Squared Error) was employed to measure the difference 

between predicted and actual pIC50 values. The model was fine-tuned for several epochs to reduce 

training and validation loss. This two-step approach of pretraining and fine-tuning allowed the 

GIN to combine general molecular feature extraction with task-specific optimisation, significantly 

improving its accuracy and robustness in predicting pIC50 values. 

3.3 Experimental Setup 

 Colorimetric Determination of Acetylcholinesterase (AChE) Activity: To validate the 

predictions of the GIN, the toxicities of two pesticides, Profenofos and Dichlorvos, were 

experimentally determined using an AChE inhibition assay. A preliminary experiment to 

determine AChE activity was conducted before testing pesticide inhibition to optimise the dilution 

factor of the AChE enzyme – the goal was to achieve a baseline Vmax (i.e., maximum reaction rate) 

of approximately 100 without the addition of pesticides. After attaining the optimal dilution factor 

of enzyme, the chemical procedure was as follows: (i) preparation: stock solutions of the two 

pesticides were prepared, serially diluted to create eight concentrations for testing covering a wide 

range to accurately capture dose-response behaviour; (ii) enzyme incubation: in 96-well plates, 

triplicates were prepared for each pesticide concentration to ensure reproducibility. Control wells 

(without pesticide) were included to establish baseline AChE activity. AChE enzyme solution was 

added to each well containing one of the pesticide concentrations, the mixtures were incubated at 

25°C for 15 minutes to allow the pesticides to interact with and inhibit the enzyme; (iii) addition 

of Ellman’s Assay: Ellman’s reagent (5,5′-dithiobis-(2-nitrobenzoic acid)) and the substrate 

acetylcholine were added to the wells. Ellman’s assay produces a yellow colour as AChE catalyses 

the breakdown of acetylcholine, with the intensity proportional to the enzyme's activity10; (iv) 

spectrophotometry: a spectrophotometer was used to measure the colour intensity of the solutions 

and the reaction rates (i.e. Vmax) at a wavelength of 412 nm, reflecting the enzyme’s activity at 
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each pesticide concentration; and (v) repetition for consistency: to enhance the reliability of results, 

the entire experiment was repeated four times for each pesticide, and the mean values for each 

measurement were calculated. This comprehensive setup provided a robust dataset for statistical 

analysis and reduced the influence of experimental variability. 

 Data Collection: To quantify enzyme inhibition, the following steps were performed: (i) 

Vmax Measurement: the spectrophotometer recorded the Vmax values for each pesticide 

concentration in triplicate; (ii) averaging Vmax: the Vmax values for each concentration were 

averaged across the triplicates; (iii) enzyme activity calculation: the enzyme activity at each 

concentration was expressed as a percentage relative to a control (enzyme activity without 

pesticide) using the formula: Enzyme activity (%) = Vmax (sample) / Vmax (control) x 100; 

and (iv) percentage inhibition: The percentage inhibition of AChE was calculated as: inhibition 

(%) = 100 - Enzyme Activity (%). These calculations were repeated for all eight pesticide 

concentrations for both pesticides. 

 pIC50 Determination: The pIC50 values of the pesticides were determined using the 

following approach: (i) data plotting: the percentage inhibition values at each pesticide 

concentration were entered into PRISM GRAPHPAD software; (ii) sigmoidal curve fitting: a dose-

response curve of percentage inhibition against log-transformed pesticide concentration was 

plotted (Fig. 1); (iii) pIC50 determination: the Sigmoidal, 4PL function was used to determine the 

IC50 value, which was converted to pIC50 using the formula: pIC50 = −log10(IC50). The 

resulting pIC50 values provided a quantitative measure of each pesticide’s inhibitory potency, 

which was then compared to the GIN’s predicted values for model validation. 

 
Fig. 1. Built-in equation for Sigmoidal, 4Pl function of the PRISM GRAPHPAD software 

4. Results  

4.1 GIN Prediction Results 

Prediction accuracy:  
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Fig. 2. Scatter plots of predicted vs actual pIC50 values using simpler models: (from left to right) simple 
linear regression, random forest regression and GIN 

 

 

Model Mean squared error 

Simple linear regression 1.4881 

Random forest regression 0.5789 

Graph isomorphism network 0.5698 

Fig. 3. Table of values of mean squared error for each model employed 

 

 
Fig. 4. Training and validation losses over 10 training epochs, with the GIN model saved at the best validation loss 

 

 
Fig. 5. GIN’s predicted pIC50 values, where molecule 1 represents Dichlorvos and molecule 2 represents 

Profenofos 

4.2 Experimental Results 

 Inhibition data: 
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Fig. 6. Experimental data for Profenofos across four experiments, read from left to right, top to bottom, with log 

concentration (x-axis) and percentage inhibition (y-axis) boxed 

 

 
Fig. 7. Experimental data for Dichlorvos across four experiments, read from left to right, top to bottom, with log 

concentration (x-axis) and percentage inhibition (y-axis) boxed 
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Sigmoidal fit: 

 
Fig. 8. Sigmoidal curves of percentage AChE inhibition against log-transformed concentration of Profenofos across 

four experiments, as plotted on PRISM 

 

 
Fig. 9. Statistical analysis of critical values, particularly pIC50 (in red) and R2 (in blue), for Profenofos 

 

 
Fig. 10. Sigmoidal curves of percentage AChE inhibition against log-transformed concentration of Dichlorvos 

across four experiments, as plotted on PRISM 

 

 
Fig. 11.  Statistical analysis of critical values, particularly pIC50 (in red) and R2 (in blue), for Dichlorvos 
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4.3 Comparison of GIN Predictions and Experimental pIC50 Values 

 
Fig. 12. Bar graph of predicted vs experimental pIC50 values for Profenofos and Dichlorvos 

 

5. Discussion 

5.1 Interpretation of Model Performance 

 Strengths: The GIN demonstrated relatively strong performance in predicting pIC50 

values from molecular SMILES strings, highlighting the model’s ability to capture the relationship 

between molecular structure and inhibitory potency. The pretraining on a large toxicity dataset 

ensured the model learned generalisable molecular features, while fine-tuning on the smaller 

dataset of labelled pIC50 values enabled it to specialise in this specific task. 

Challenges: Despite the model’s success, certain challenges were identified: (i) potential 

overfitting: despite cross validation, the smaller fine-tuning dataset may limit generalisation and 

increase the risk of overfitting, especially if the model becomes too specialised to the training data; 

(ii) prediction discrepancies: variability in enzyme activity or spectrophotometric readings, 

compounded by the training dataset's limited chemical diversity, may contribute to differences 

between predicted and experimental pIC50 values; (iii) rare or unique molecular structures: 

underrepresented or absent structural motifs in the training data may reduce prediction accuracy 

for complex molecules; (iv) simplified assumptions in computational modelling: while GINs excel 

at capturing molecular topology and physicochemical properties, certain biochemical factors 

influencing pIC50 values, such as solvent effects, metabolic pathways or protein-ligand dynamics, 

are not explicitly modelled, contributing to prediction errors; and (v) substructure representation: 

GINs may struggle with complex substructures, such as large aromatic systems with multiple 

halogen and functional group substitutions, which present intricate patterns of interactions that can 

be difficult to fully capture. 

5.2 Experimental verification 

 Agreement between predicted and experimental values: The comparison between the 

GIN model's predicted pIC50 values and those experimentally-obtained through enzyme inhibition 

assays provides insights into the model’s performance and its ability to generalize from the training 

data to unseen test compounds. In this section, we analyse the correlation between the predicted 

and experimental pIC50 values for Dichlorvos and Profenofos — which were used to validate the 

model. For Dichlorvos, the GIN model demonstrated a high degree of accuracy in predicting the 

pIC50 value, with a difference of 0.00330 (Fig. 12). The empirically determined pIC50 was found 

to be closely aligned with the model’s predicted value, indicating that the model was able to 

effectively capture the relationship between the SMILES representation of Dichlorvos and its 

toxicity. In contrast, for Profenofos, the discrepancy between the predicted and experimental 
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values for Profenofos was more pronounced, with a larger difference of 1.10581 (Fig. 12), which 

suggests that the model struggled with the complex molecular features of this compound. 

 Evaluation: Dichlorvos achieved an R² value of 0.9994, indicating an almost perfect fit 

between the experimental data and the sigmoidal curve. This high R² suggests that the enzyme 

inhibition data followed a consistent pattern with minimal variability, making it easier for the GIN 

model to predict the pIC50 value accurately. Profenofos, in contrast, achieved an R² of 0.9985, 

still high but slightly lower than Dichlorvos. This minor drop in R² reflects a slight increase in 

variability in the experimental data.  

A comparison between the predicted and experimental pIC50 values revealed a stronger 

correlation for Dichlorvos (COP(=O)(OC)OC=C(Cl)Cl) than Profenofos 

(CCCSP(=O)(OCC)OC1=C(C=C(C=C1)Br)Cl). The observed discrepancy in model accuracy 

may stem from several factors: (i) chemical complexity: Dichlorvos is a simpler molecule with a 

more straightforward structure, consisting of a phosphate group, two ester linkages and a 

conjugated alkene. Meanwhile, Profenofos’ bulkier, more intricate structure, with a large aromatic 

ring system (i.e. benzene with bromine and chlorine substituents) attached to a phosphorothioate 

group adds more variability to the molecular structure, including additional aromaticity and 

halogenation, which may challenge the model’s ability to capture binding dynamics; (ii) training 

data bias: the pretraining dataset may have overrepresented simpler molecules like Dichlorvos and 

underrepresented complex aromatic systems, reducing accuracy for molecules like Profenofos; 

(iii) interaction dynamics: while Dichlorvos, being a relatively smaller and more linear molecule, 

might have more predictable interactions, Profenofos’ steric hindrance and complex binding 

dynamics may exceed the model’s current capacity to account for factors like solubility and 

metabolic transformations that exert a greater influence on the biological activity of Profenofos. 

5.3 Implications and Future Work 

 Room for improvement of GIN model: The lower accuracy for Profenofos is likely due 

to its complex structure, underrepresented in the training data and the GIN’s difficulty handling 

aromatic and halogenated features. Future improvements could include expanding the dataset with 

more complex molecules, enhancing feature extraction for subtle structural details, refining the 

model for nuanced interactions, and optimising training methods to improve accuracy and 

generalisability. 

Potential real-world applications: The GIN model has broad real-world potential in drug 

discovery, toxicology and environmental science. It can predict the efficacy and toxicity of drug 

candidates, assess pesticide toxicity to protect non-target organisms and aid in hazard classification 

and risk assessment for industrial chemicals, pharmaceuticals, and pollutants. 

 

6. Conclusion 

 Main findings: This study highlights the GIN’s ability to predict pIC50 values from 

SMILES, bridging computational modeling and experimental validation in toxicity assessment. 

AChE inhibition assays confirmed strong prediction accuracy for Dichlorvos, with more 

variability for Profenofos. While reliable for simpler molecules, performance declined with 

increasing complexity of chemical structures, emphasising the need for diverse data and better 

feature representation. The research demonstrates GINs' potential in drug discovery, toxicology 

and environmental science. 
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