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1. Abstract

Accurate pIC50 prediction is vital for assessing the toxicity and potency of chemical
compounds, including pesticides. This study leverages computational and experimental
approaches to achieve this goal. A Graph Isomorphism Network (GIN) was pretrained on a large
PubChem dataset (117,520 molecules) to learn node-level molecular features and fine-tuned on a
smaller dataset (14,611 molecules) containing experimentally determined pIC50 values. The
model predicts pIC50 values directly from molecular SMILES strings. VValidation of the GIN's
predictions was conducted using spectrophotometric assays to determine empirical pIC50 values
for two pesticides of differing potency. A strong correlation between predicted and experimental
values highlights the potential of combining graph-based deep learning for toxicity prediction.

2. Introduction

Molecular property prediction is a key area of computational chemistry, aimed at
developing models that map molecular structures to their properties.! The accurate prediction of a
compound’s inhibitory concentration (pIC50) is a cornerstone of toxicological studies, allowing
chemical structures, simulation, and physical data to be integrated when predicting health risks
and other toxicological information.? The pIC50 value, which quantifies the half maximal
inhibitory concentration, is used to determine the potency of a drug against a variety of enzymes
or biological targets associated with the pathogenesis of multiple disorders.® Experimental
identification of the bioactivity of each potential peptide is an expensive and time-consuming task.*
Deep representation learning has been reported as a promising approach for molecular property
prediction, outperforming fixed molecular representations.*

However, accurately predicting molecular properties poses a significant challenge due to
the complex relationships between molecular structures and their properties.> Molecules are
typically represented in three ways: fixed representations, including fingerprints and structural
keys, that signify the presence of specific structural patterns; linear notations, such as Simplified
Molecular Input Line Entry System (SMILES) strings; and molecular graphs.® With the advent of
deep learning, various neural networks have been proposed for molecular representation learning,
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and graph
neural networks (GNNs).!

One major task for Al in drug discovery is molecular property prediction.! Graph
Isomorphism Networks (GINs) address this challenge by representing molecules as graphs,
capturing both local and global features to link chemical topology to biological activity.
Furthermore, transfer learning has emerged as an essential technique to address the scarcity of
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labelled data and high dimensionality of feature spaces.® By leveraging knowledge gained from
related tasks, transfer learning enables models to generalise better to target tasks with limited
training data, enhancing prediction accuracy. Thus, to enhance model accuracy, pretraining on
large datasets followed by task-specific fine-tuning is crucial.

The EU has established a new chemical assessment paradigm (REACH, enacted in 2007)
to evaluate chemicals globally.® In the USA, quantitative structure—activity relationships (QSARS)
predictions are used to evaluate two to three thousand chemicals each year and to assess a
significant portion of the toxicity information.” However, traditional QSAR models often rely on
predefined molecular descriptors (e.g., atom counts, bond types, molecular weight) and linear or
nonlinear regression models to establish relationships between molecular features and biological
activity.® The coverage and comprehensiveness of metabolic data presents a critical challenge with
respect to QSAR modelling®, requiring manual recalibration for new datasets or molecular classes.

In this study, we developed a GIN model pretrained on a PubChem toxicity dataset of over
100,000 molecules and fine-tuned it on over 14,000 molecules with known pIC50 values to predict
pesticide inhibition. Unlike the static descriptors of QSAR, the GIN directly learns from molecular
graph representations and captures topological and relational features more comprehensively.
Additionally, the GIN can incorporate new data seamlessly through retraining. Validation through
acetylcholinesterase (AChE) spectrophotometric assays revealed strong agreement between
predicted and experimental pIC50 values. B

3. Materials and Methods
3.1 Dataset and Data Preprocessing

SMILES Representation: Molecular structures in both datasets were represented using
the SMILES notation. To prepare the data for the GIN model, each SMILES string was converted
into a graph structure. In this representation, nodes represent the atoms in the molecule and edges
represent the bonds between atoms. Bond types (single, double, etc.) were encoded as edge
attributes. This transformation enabled the model to process molecular structures in a graph format,
capturing both the local connectivity of atoms and the overall topology of the molecule.

Feature extraction: Feature extraction was conducted to provide meaningful inputs to the
GIN model at both the node and graph levels. To extract node level features, each atom in the
graph was assigned a feature vector encoding its chemical properties, such as atom type,
hybridization state and presence of formal charges, to allow the GIN to learn how individual atoms
contribute to the molecule’s overall activity. In addition, graph-level descriptors such as molecular
weight, lipophilicity and topological polar surface area (TPSA) were computed, summarising
global molecular properties particularly relevant for pIC50 prediction. Such preprocessing pipeline
ensured that the GIN could learn from both the detailed local information at the atom level and the
broader structural and physicochemical properties of each molecule.

3.2 Model Architecture and Pretraining

GIN Components: The GIN was chosen for this study due to its ability to distinguish non-
isomorphic graphs effectively, making it ideal for molecular graph representation. The key
components of the GIN architecture are as follows: (i) the input layer consisting of molecular
graphs converted from SMILES strings; (ii) graph convolution layers aggregating information



from neighbouring nodes, iteratively updating each node’s representation to encode local structural
and chemical information; (iii) hidden layers triggering nonlinear transformations using activation
functions (e.g. ReLU) and batch normalisation to stabilise training; (iv) the readout layer, a global
pooling layer combining node features into a fixed-size graph-level representation; and (v) the
task-specific output layer — during pretraining, the output is node-level predictions to learn
molecular substructures, while during fine-tuning, the output is a single graph-level target (i.e.
pIC50).

Pretraining on the PubChem Dataset: To build a robust feature extractor, the GIN was
pretrained on a large toxicity dataset from PubChem via a self-supervised learning task, where the
goal was to predict node-level features, such as atomic environments or chemical properties. Using
the generative reconstruction technique, we masked the features of a random batch of nodes,
forwarded the masked graph through the GIN encoder and reconstructed the masked node features
given the node representations of their local sub-graphs®. The model parameters were then
optimised using gradient descent and a loss function that measured the accuracy of node-level
predictions.

Fine-tuning for pIC50 Prediction: After pretraining, the GIN was fine-tuned on a smaller
dataset with corresponding plC50 values. This phase involved task-specific adjustments, where (i)
the output layer was modified to predict graph-level instead of node-level properties; (ii) both
node-level features (e.g., atomic types) and graph-level descriptors (e.g., molecular weight,
lipophilicity, TPSA) were utilised to enhance prediction accuracy; and (iii) the pre-trained weights
were used to initialise the GIN, allowing the model to retain its learned molecular features. A
regression loss function (e.g., Mean Squared Error) was employed to measure the difference
between predicted and actual pIC50 values. The model was fine-tuned for several epochs to reduce
training and validation loss. This two-step approach of pretraining and fine-tuning allowed the
GIN to combine general molecular feature extraction with task-specific optimisation, significantly
improving its accuracy and robustness in predicting pIC50 values.

3.3 Experimental Setup

Colorimetric Determination of Acetylcholinesterase (AChE) Activity: To validate the
predictions of the GIN, the toxicities of two pesticides, Profenofos and Dichlorvos, were
experimentally determined using an AChE inhibition assay. A preliminary experiment to
determine AChE activity was conducted before testing pesticide inhibition to optimise the dilution
factor of the AChE enzyme — the goal was to achieve a baseline Vmax (i.e., maximum reaction rate)
of approximately 100 without the addition of pesticides. After attaining the optimal dilution factor
of enzyme, the chemical procedure was as follows: (i) preparation: stock solutions of the two
pesticides were prepared, serially diluted to create eight concentrations for testing covering a wide
range to accurately capture dose-response behaviour; (ii) enzyme incubation: in 96-well plates,
triplicates were prepared for each pesticide concentration to ensure reproducibility. Control wells
(without pesticide) were included to establish baseline AChE activity. AChE enzyme solution was
added to each well containing one of the pesticide concentrations, the mixtures were incubated at
25°C for 15 minutes to allow the pesticides to interact with and inhibit the enzyme; (iii) addition
of Ellman’s Assay: Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid)) and the substrate
acetylcholine were added to the wells. Ellman’s assay produces a yellow colour as AChE catalyses
the breakdown of acetylcholine, with the intensity proportional to the enzyme's activity'%; (iv)
spectrophotometry: a spectrophotometer was used to measure the colour intensity of the solutions
and the reaction rates (i.e. Vmax) at a wavelength of 412 nm, reflecting the enzyme’s activity at
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each pesticide concentration; and (v) repetition for consistency: to enhance the reliability of results,
the entire experiment was repeated four times for each pesticide, and the mean values for each
measurement were calculated. This comprehensive setup provided a robust dataset for statistical
analysis and reduced the influence of experimental variability.

Data Collection: To quantify enzyme inhibition, the following steps were performed: (i)
Vmax Measurement: the spectrophotometer recorded the Vmax values for each pesticide
concentration in triplicate; (ii) averaging Vmax: the Vmax Values for each concentration were
averaged across the triplicates; (iii) enzyme activity calculation: the enzyme activity at each
concentration was expressed as a percentage relative to a control (enzyme activity without
pesticide) using the formula: Enzyme activity (%) = Vmax (Sample) / Vmax (control) x 100;
and (iv) percentage inhibition: The percentage inhibition of AChE was calculated as: inhibition
(%) = 100 - Enzyme Activity (%). These calculations were repeated for all eight pesticide
concentrations for both pesticides.

pIC50 Determination: The plC50 values of the pesticides were determined using the
following approach: (i) data plotting: the percentage inhibition values at each pesticide
concentration were entered into PRISM GRAPHPAD software; (ii) sigmoidal curve fitting: a dose-
response curve of percentage inhibition against log-transformed pesticide concentration was
plotted (Fig. 1); (iii) pIC50 determination: the Sigmoidal, 4PL function was used to determine the
IC50 value, which was converted to plIC50 using the formula: pIC50 = —10g10(IC50). The
resulting pIC50 values provided a quantitative measure of each pesticide’s inhibitory potency,
which was then compared to the GIN’s predicted values for model validation.
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Fig. 1. Built-in equation for Sigmoidal, 4P function of the PRISM GRAPHPAD software
4. Results
4.1 GIN Prediction Results

Prediction accuracy:

Actual vs Predicted pIC50 Values (Test Set) - Linear Regression Actual vs Predicted pIC50 Values (Test Set) - Random Forest Regression Actual vs Predicted pIC50 Values (Test Set) - Graph Isomrphism Network




Fig. 2. Scatter plots of predicted vs actual pIC50 values using simpler models: (from left to right) simple
linear regression, random forest regression and GIN

Model Mean squared error
Simple linear regression 1.4881
Random forest regression 0.5789
Graph isomorphism network 0.5698

Fig. 3. Table of values of mean squared error for each model employed

Epoch 1, Training Loss: ©.7303854137496218

Epoch 1, Validation Loss: 0.6841405176598093

Model saved at epoch 1 with validation loss: @.6841485176598893
Epoch 2, Training Loss: @.580572730042244

Epoch 2, Validation Loss: 0.7463898336821017

Epoch 3, Training Loss: ©.523014206852478

Epoch 3, Validation Loss: 0.6647768183578153

Model saved at epoch 3 with validation loss: 8.6647760183578153
Epoch 4, Training Loss: 0.4844845746710001

Epoch 4, Validation Loss: 8.6399535850858622

Model saved at epoch 4 with validation loss: 0.6399535050858622
Epoch 5, Training Loss: ©.4589613482274644

Epoch 5, Validation Loss: 0.7705744919569596

Epoch 6, Training Loss: ©.4385773871337267

Epoch 6, Validation Loss: 0.7156238910964634

Epoch 7, Training Loss: ©.42326210919625123

Epoch 7, Validation Loss: 0.6127975868142169

Model saved at epoch 7 with validation loss: 8.6127975868142169
Epoch 8, Training Loss: 0.4083780018521137

Epoch 8, Validation Loss: 8.6275735769582831

Epoch 9, Training Loss: 0.3965139038901511

Epoch 9, Validation Loss: 0.6954148481741532

Epoch 1@, Training Loss: @.38277937610292695

Epoch 1@, Validation Loss: ©.5683993489845939

Model saved at epoch 1@ with validation loss: 8.5683993489845939

Fig. 4. Training and validation losses over 10 training epochs, with the GIN model saved at the best validation loss

new_moleculel_smiles = "COP(=0)(0C)0C=C(C1l)C1"
predicted_pIC50 = predict_pIC508(new_moleculel_smiles, model, data_mean, data_std)
print(f"Predicted pIC508 for {new_moleculel_smiles}: {predicted_pIC50}")

new_molecule2_smiles = “CCCSP(=0)(0CC)0C1=C(C=C(C=C1)Br)cl"
predicted_pIC5@ = predict_pIC5@(new_molecule2_smiles, model, data_mean, data_std)
print(f"Predicted pIC5@ for {new_molecule2_smiles}: {predicted_pIC58}")

Predicted pIC58 for COP(=0)(0C)0C=C(C1)C1l: 3.00315197293448
Predicted pIC58 for CCCSP(=0)(0CC)0C1=C(C=C(C=C1)Br)Cl: 4.224558182399754
Fig. 5. GIN's predicted pIC50 values, where molecule 1 represents Dichlorvos and molecule 2 represents
Profenofos

4.2 Experimental Results

Inhibition data:
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Fig. 6. Experimental data for Profenofos across four experiments, read from left to right, top to bottom, with log
concentration (x-axis) and percentage inhibition (y-axis) boxed
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Fig. 7. Experimental data for Dichlorvos across four experiments, read from left to right, top to bottom, with log
concentration (x-axis) and percentage inhibition (y-axis) boxed



Sigmoidal fit:
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Fig. 8. Sigmoidal curves of percentage AChE inhibition against log-transformed concentration of Profenofos across
four experiments, as plotted on PRISM

Best-fit values Expt 1 Expt 2 Expt 3 Expt 4 Mean
Top 104.5 102.1 105.4 99.58 102.895
Bottom 0.3186 -1.396 -0.7566 | -0.05916 | -0.47329
LogIC50 3.215 2.978 3.227 3.055 3.11875
HillSlope 1.254 1.224 1.036 1.072 1.1465
IC50 1642 951.2 1686 1134 1353.3
Span 104.2 103.5 106.2 99.64 103.385
Goodness of Fit
Degrees of Freedom 4 4 4 4
R square 0.9984 0.9977 0.9988 0.999 0.998475
Absolute Sum of Squares 22.05 29.52 14.98 12.34
Sy.x 2.348 2.716 1.935 1.757

Fig. 9. Statistical analysis of critical values, particularly pIC50 (in red) and R? (in blue), for Profenofos
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Fig. 10. Sigmoidal curves of percentage AChE inhibition against log-transformed concentration of Dichlorvos
across four experiments, as plotted on PRISM

Best-fit values Expt 1 Expt 2 Expt 3 Expt 4 Mean
Top 101.7 101.9 103.9 104.2 102.925
Bottom 1.092 0.686 -0.1098 | -0.06993 |0.3995675
LogIC50 3.07 2.96 3 2.996 3.0065
HillSlope 1.356 1.397 1.37 1.233 1.339
IC50 1176 911.6 1001 989.7 1019.575
Span 100.6 101.2 104 104.3 102.525
Goodness of Fit
Degrees of Freedom 4 4 4 4
R square 0.999 0.9993 0.9997 0.9995 0.9994
Absolute Sum of Squares| 13.28 7.926 3.662 6.321
Sy.x 1.822 1.408 0.9568 1.257

Fig. 11. Statistical analysis of critical values, particularly pIC50 (in red) and R? (in blue), for Dichlorvos



4.3 Comparison of GIN Predictions and Experimental pIC50 Values

Profenofos Dichlorvos

M Predicted value Experimental value

Fig. 12. Bar graph of predicted vs experimental pIC50 values for Profenofos and Dichlorvos
5. Discussion
5.1 Interpretation of Model Performance

Strengths: The GIN demonstrated relatively strong performance in predicting plC50
values from molecular SMILES strings, highlighting the model’s ability to capture the relationship
between molecular structure and inhibitory potency. The pretraining on a large toxicity dataset
ensured the model learned generalisable molecular features, while fine-tuning on the smaller
dataset of labelled pIC50 values enabled it to specialise in this specific task.

Challenges: Despite the model’s success, certain challenges were identified: (i) potential
overfitting: despite cross validation, the smaller fine-tuning dataset may limit generalisation and
increase the risk of overfitting, especially if the model becomes too specialised to the training data;
(it) prediction discrepancies: variability in enzyme activity or spectrophotometric readings,
compounded by the training dataset's limited chemical diversity, may contribute to differences
between predicted and experimental pIC50 values; (iii) rare or unique molecular structures:
underrepresented or absent structural motifs in the training data may reduce prediction accuracy
for complex molecules; (iv) simplified assumptions in computational modelling: while GINs excel
at capturing molecular topology and physicochemical properties, certain biochemical factors
influencing pIC50 values, such as solvent effects, metabolic pathways or protein-ligand dynamics,
are not explicitly modelled, contributing to prediction errors; and (v) substructure representation:
GINs may struggle with complex substructures, such as large aromatic systems with multiple
halogen and functional group substitutions, which present intricate patterns of interactions that can
be difficult to fully capture.

5.2 Experimental verification

Agreement between predicted and experimental values: The comparison between the
GIN model's predicted pIC50 values and those experimentally-obtained through enzyme inhibition
assays provides insights into the model’s performance and its ability to generalize from the training
data to unseen test compounds. In this section, we analyse the correlation between the predicted
and experimental pIC50 values for Dichlorvos and Profenofos — which were used to validate the
model. For Dichlorvos, the GIN model demonstrated a high degree of accuracy in predicting the
pIC50 value, with a difference of 0.00330 (Fig. 12). The empirically determined pIC50 was found
to be closely aligned with the model’s predicted value, indicating that the model was able to
effectively capture the relationship between the SMILES representation of Dichlorvos and its
toxicity. In contrast, for Profenofos, the discrepancy between the predicted and experimental



values for Profenofos was more pronounced, with a larger difference of 1.10581 (Fig. 12), which
suggests that the model struggled with the complex molecular features of this compound.

Evaluation: Dichlorvos achieved an R2 value of 0.9994, indicating an almost perfect fit
between the experimental data and the sigmoidal curve. This high R? suggests that the enzyme
inhibition data followed a consistent pattern with minimal variability, making it easier for the GIN
model to predict the pIC50 value accurately. Profenofos, in contrast, achieved an R? of 0.9985,
still high but slightly lower than Dichlorvos. This minor drop in R2 reflects a slight increase in
variability in the experimental data.

A comparison between the predicted and experimental pIC50 values revealed a stronger
correlation for Dichlorvos (COP(=0)(OC)OC=C(ChHCI) than Profenofos
(CCCSP(=0)(0CC)0OC1=C(C=C(C=C1)Br)CI). The observed discrepancy in model accuracy
may stem from several factors: (i) chemical complexity: Dichlorvos is a simpler molecule with a
more straightforward structure, consisting of a phosphate group, two ester linkages and a
conjugated alkene. Meanwhile, Profenofos’ bulkier, more intricate structure, with a large aromatic
ring system (i.e. benzene with bromine and chlorine substituents) attached to a phosphorothioate
group adds more variability to the molecular structure, including additional aromaticity and
halogenation, which may challenge the model’s ability to capture binding dynamics; (ii) training
data bias: the pretraining dataset may have overrepresented simpler molecules like Dichlorvos and
underrepresented complex aromatic systems, reducing accuracy for molecules like Profenofos;
(i) interaction dynamics: while Dichlorvos, being a relatively smaller and more linear molecule,
might have more predictable interactions, Profenofos’ steric hindrance and complex binding
dynamics may exceed the model’s current capacity to account for factors like solubility and
metabolic transformations that exert a greater influence on the biological activity of Profenofos.

5.3 Implications and Future Work

Room for improvement of GIN model: The lower accuracy for Profenofos is likely due
to its complex structure, underrepresented in the training data and the GIN’s difficulty handling
aromatic and halogenated features. Future improvements could include expanding the dataset with
more complex molecules, enhancing feature extraction for subtle structural details, refining the
model for nuanced interactions, and optimising training methods to improve accuracy and
generalisability.

Potential real-world applications: The GIN model has broad real-world potential in drug
discovery, toxicology and environmental science. It can predict the efficacy and toxicity of drug
candidates, assess pesticide toxicity to protect non-target organisms and aid in hazard classification
and risk assessment for industrial chemicals, pharmaceuticals, and pollutants.

6. Conclusion

Main findings: This study highlights the GIN’s ability to predict pIC50 values from
SMILES, bridging computational modeling and experimental validation in toxicity assessment.
AChE inhibition assays confirmed strong prediction accuracy for Dichlorvos, with more
variability for Profenofos. While reliable for simpler molecules, performance declined with
increasing complexity of chemical structures, emphasising the need for diverse data and better
feature representation. The research demonstrates GINs' potential in drug discovery, toxicology
and environmental science.
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